Author Archives: nurhidayati agus

About nurhidayati agus

Mahasiswi UMP

KIMIA

Standard

            Kimia (dari bahasa Arab: كيمياء, transliterasi: kimiya = perubahan benda/zat atau bahasa Yunani: χημεία, transliterasi: khemeia) adalah ilmu yang mempelajari mengenai komposisi, struktur, dan sifat zat atau materi dari skala atom hingga molekul serta perubahan atau transformasi serta interaksi mereka untuk membentuk materi yang ditemukan sehari-hari. Kimia juga mempelajari pemahaman sifat dan interaksi atom individu dengan tujuan untuk menerapkan pengetahuan tersebut pada tingkat makroskopik. Menurut kimia modern, sifat fisik materi umumnya ditentukan oleh struktur pada tingkat atom yang pada gilirannya ditentukan oleh gaya antaratom dan ikatan kimia.

            Kimia sering disebut sebagai “ilmu andryan” karena menghubungkan berbagai ilmu lain, seperti fisika, ilmu bahan, nanoteknologi, biologi, farmasi, kedokteran, bioinformatika, dan geologi. Koneksi ini timbul melalui berbagai subdisiplin yang memanfaatkan konsep-konsep dari berbagai disiplin ilmu. Sebagai contoh, kimia fisik melibatkan penerapan prinsip-prinsip fisika terhadap materi pada tingkat atom dan molekul.

            Kimia berhubungan dengan interaksi materi yang dapat melibatkan dua zat atau antara materi dan energi, terutama dalam hubungannya dengan hukum pertama termodinamika. Kimia tradisional melibatkan interaksi antara zat kimia dalam reaksi kimia, yang mengubah satu atau lebih zat menjadi satu atau lebih zat lain. Kadang reaksi ini digerakkan oleh pertimbangan entalpi, seperti ketika dua zat berentalpi tinggi seperti hidrogen dan oksigen elemental bereaksi membentuk air, zat dengan entalpi lebih rendah. Reaksi kimia dapat difasilitasi dengan suatu katalis, yang umumnya merupakan zat kimia lain yang terlibat dalam media reaksi tapi tidak dikonsumsi (contohnya adalah asam sulfat yang mengkatalisasi elektrolisis air) atau fenomena immaterial (seperti radiasi elektromagnet dalam reaksi fotokimia). Kimia tradisional juga menangani analisis zat kimia, baik di dalam maupun di luar suatu reaksi, seperti dalam spektroskopi.

            Materi dapat digolongkan dalam 4 fase, urutan dari yang memiliki energi paling rendah adalah padat, cair, gas, dan plasma. Dari keempat jenis fase ini, fase plasma hanya dapat ditemui di luar angkasa yang berupa bintang, karena kebutuhan energinya yang teramat besar. Zat padat memiliki struktur tetap pada suhu kamar yang dapat melawan gravitasi atau gaya lemah lain yang mencoba mengubahnya. Zat cair memiliki ikatan yang terbatas, tanpa struktur, dan akan mengalir bersama gravitasi. Gas tidak memiliki ikatan dan bertindak sebagai partikel bebas. Sementara itu, plasma hanya terdiri dari ion-ion yang bergerak bebas; pasokan energi yang berlebih mencegah ion-ion ini bersatu menjadi partikel unsur. Satu cara untuk membedakan ketiga fase pertama adalah dengan volume dan bentuknya: kasarnya, zat padat memeliki volume dan bentuk yang tetap, zat cair memiliki volume tetap tapi tanpa bentuk yang tetap, sedangkan gas tidak memiliki baik volume ataupun bentuk yang tetap.

Kimia umumnya dibagi menjadi beberapa bidang utama. Terdapat pula beberapa cabang antar-bidang dan cabang-cabang yang lebih khusus dalam kimia.

Lima Cabang Utama:

Atom

Artikel utama untuk bagian ini adalah: Atom

Atom adalah suatu kumpulan materi yang terdiri atas inti yang bermuatan positif, yang biasanya mengandung proton dan neutron, dan beberapa elektron di sekitarnya yang mengimbangi muatan positif inti. Atom juga merupakan satuan terkecil yang dapat diuraikan dari suatu unsur dan masih mempertahankan sifatnya, terbentuk dari inti yang rapat dan bermuatan positif dikelilingi oleh suatu sistem elektron.

Unsur

 Bijih uranium

Artikel utama untuk bagian ini adalah: Unsur kimia

Unsur adalah sekelompok atom yang memiliki jumlah proton yang sama pada intinya. Jumlah ini disebut sebagai nomor atom unsur. Sebagai contoh, semua atom yang memiliki 6 proton pada intinya adalah atom dari unsur kimia karbon, dan semua atom yang memiliki 92 proton pada intinya adalah atom unsur uranium.

 Ion

Artikel utama untuk bagian ini adalah: Ion

Ion atau spesies bermuatan, atau suatu atom atau molekul yang kehilangan atau mendapatkan satu atau lebih elektron. Kation bermuatan positif (misalnya kation natrium Na+) dan anion bermuatan negatif (misalnya klorida Cl) dapat membentuk garam netral (misalnya natrium klorida, NaCl). Contoh ion poliatom yang tidak terpecah sewaktu reaksi asam-basa adalah hidroksida (OH) dan fosfat (PO43−).

Senyawa

Artikel utama untuk bagian ini adalah: Senyawa kimia

Senyawa merupakan suatu zat yang dibentuk oleh dua atau lebih unsur dengan perbandingan tetap yang menentukan susunannya. sebagai contoh, air merupakan senyawa yang mengandung hidrogen dan oksigen dengan perbandingan dua terhadap satu. Senyawa dibentuk dan diuraikan oleh reaksi kimia.

Molekul

Artikel utama untuk bagian ini adalah: Molekul

Molekul adalah bagian terkecil dan tidak terpecah dari suatu senyawa kimia murni yang masih mempertahankan sifat kimia dan fisik yang unik. Suatu molekul terdiri dari dua atau lebih atom yang terikat satu sama lain.

Zat kimia

Artikel utama untuk bagian ini adalah: Zat kimia

Suatu ‘zat kimia’ dapat berupa suatu unsur, senyawa, atau campuran senyawa-senyawa, unsur-unsur, atau senyawa dan unsur. Sebagian besar materi yang kita temukan dalam kehidupan sehari-hari merupakan suatu bentuk campuran, misalnya air, aloy, biomassa, dll.

Ikatan kimia

 Orbital atom dan orbital molekul elektron

Artikel utama untuk bagian ini adalah: Ikatan kimia

Ikatan kimia merupakan gaya yang menahan berkumpulnya atom-atom dalam molekul atau kristal. Pada banyak senyawa sederhana, teori ikatan valensi dan konsep bilangan oksidasi dapat digunakan untuk menduga struktur molekular dan susunannya. Serupa dengan ini, teori-teori dari fisika klasik dapat digunakan untuk menduga banyak dari struktur ionik. Pada senyawa yang lebih kompleks/rumit, seperti kompleks logam, teori ikatan valensi tidak dapat digunakan karena membutuhken pemahaman yang lebih dalam dengan basis mekanika kuantum.

Wujud zat

Artikel utama untuk bagian ini adalah: Fase zat

Fase adalah kumpulan keadaan sebuah sistem fisik makroskopis yang relatif serbasama baik itu komposisi kimianya maupun sifat-sifat fisikanya (misalnya masa jenis, struktur kristal, indeks refraksi, dan lain sebagainya). Contoh keadaan fase yang kita kenal adalah padatan, cair, dan gas. Keadaan fase yang lain yang misalnya plasma, kondensasi Bose-Einstein, dan kondensasi Fermion. Keadaan fase dari material magnetik adalah paramagnetik, feromagnetik dan diamagnetik.

Reaksi kimia

 Reaksi kimia antara hidrogen klorida dan amonia membentuk senyawa baru amonium klorida

Artikel utama untuk bagian ini adalah: Reaksi kimia

Reaksi kimia adalah transformasi/perubahan dalam struktur molekul. Reaksi ini bisa menghasilkan penggabungan molekul membentuk molekul yang lebih besar, pembelahan molekul menjadi dua atau lebih molekul yang lebih kecil, atau penataulangan atom-atom dalam molekul. Reaksi kimia selalu melibatkan terbentuk atau terputusnya ikatan kimia.

Kimia kuantum

Artikel utama untuk bagian ini adalah: Kimia kuantum

Kimia kuantum secara matematis menjelaskan kelakuan dasar materi pada tingkat molekul. Secara prinsip, dimungkinkan untuk menjelaskan semua sistem kimia dengan menggunakan teori ini. Dalam praktiknya, hanya sistem kimia paling sederhana yang dapat secara realistis diinvestigasi dengan mekanika kuantum murni dan harus dilakukan hampiran untuk sebagian besar tujuan praktis (misalnya, Hartree-Fock, pasca-Hartree-Fock, atau teori fungsi kerapatan, lihat kimia komputasi untuk detilnya). Karenanya, pemahaman mendalam mekanika kuantum tidak diperlukan bagi sebagian besar bidang kimia karena implikasi penting dari teori (terutama hampiran orbital) dapat dipahami dan diterapkan dengan lebih sederhana.

Dalam mekanika kuantum (beberapa penerapan dalam kimia komputasi dan kimia kuantum), Hamiltonan, atau keadaan fisik, dari partikel dapat dinyatakan sebagai penjumlahan dua operator, satu berhubungan dengan energi kinetik dan satunya dengan energi potensial. Hamiltonan dalam persamaan gelombang Schrödinger yang digunakan dalam kimia kuantum tidak memiliki terminologi bagi putaran elektron.

Penyelesaian persamaan Schrödinger untuk atom hidrogen memberikan bentuk persamaan gelombang untuk orbital atom, dan energi relatif dari orbital 1s, 2s, 2p, dan 3p. Hampiran orbital dapat digunakan untuk memahami atom lainnya seperti helium, litium, dan karbon.

 Hukum kimia

Artikel utama untuk bagian ini adalah: Hukum kimia

Hukum-hukum kimia sebenarnya merupakan hukum fisika yang diterapkan dalam sistem kimia. Konsep yang paling mendasar dalam kimia adalah Hukum kekekalan massa yang menyatakan bahwa tidak ada perubahan jumlah zat yang terukur pada saat reaksi kimia biasa. Fisika modern menunjukkan bahwa sebenarnya energilah yang kekal, dan bahwa energi dan massa saling berkaitan. Kekekalan energi ini mengarahkan kepada pentingnya konsep kesetimbangan, termodinamika, dan kinetika.

 

http://id.wikipedia.org/wiki/Kimia

Sel Elektrokimia

Standard

Sel elektrokimia dalam reaksi redoks terjadi transfer elektron dari reduktor ke oksidator. Pengetahuan adanya transfer elektron memberikan manfaat dalam upaya mengembangkan sumber energi listrik alternatif sebab aliran listrik tiada lain adalah aliran elektron. Bidang ilmu yang mempelajari energi listrik dalam reaksi kimia disebut elektrokimia. Perangkat atau instrumen untuk membangun energi listrik dari reaksi kimia dinamakan sel elektrokimia.

1. Sel Volta.

Dalam reaksi redoks terjadi transfer elektron yang menghasilkan energi listrik, seperti ditunjukkan pada Gambar 2.4. Oleh karena reaksi redoks dapat dipisahkan menjadi dua setengah reaksi, sel volta pun dapat dirancang menjadi dua tempat, yakni tempat untuk reaksi oksidasi dan tempat untuk reaksi reduksi. Kedua tempat tersebut dihubungkan melalui rangkaian luar (aliran muatan elektron) dan rangkaian dalam atau jembatan garam (aliran massa dari ion-ion).

Sel volta sederhana

Gambar 2.4 Sel volta sederhana

Jika kedua rangkaian dihubungkan, akan terjadi reaksi redoks di antara kedua setengah sel itu (lihat Gambar 2.5).
Persamaan reaksi ionnya:

Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

Persamaan reaksi setengah selnya:

Pada elektrode Zn: Zn(s) → Zn2+(aq) + 2e
Pada elektrode Cu: Cu2+(aq) + 2e → Cu(s)

reaksi redoks di antara kedua setengah sel

Gambar 2.5

Proses pembentukan energi listrik dari reaksi redoks dalam sel volta. Logam Zn akan teroksidasi membentuk ion Zn2+ dan melepaskan 2 elektron. Kedua elektron ini akan mengalir melewati voltmeter menuju elektrode Cu. Kelebihan elektron pada elektrode Cu akan diterima oleh ion Cu2+ yang disediakan oleh larutan Cu(NO3)2 sehingga terjadi reduksi ion Cu2+ menjadi Cu(s). Ketika reaksi berlangsung, dalam larutan Zn(NO3)2 akan kelebihan ion Zn2+ (hasil oksidasi). Demikian juga dalam larutan CuSO4 akan kelebihan ion NO3 sebab ion pasangannya (Cu2+) berubah menjadi logam Cu yang terendapkan pada elektrode Cu. Kelebihan ion Zn2+ akan dinetralkan oleh ion NO3 dari jembatan garam, demikian juga kelebihan ion NO3 akan dinetralkan oleh ion Na+ dari jembatan garam. Jadi, jembatan garam berfungsi menetralkan kelebihan ion-ion hasil reaksi redoks.

Dengan demikian, tanpa jembatan garam reaksi berlangsung hanya sesaat sebab kelebihan ion-ion hasil reaksi redoks tidak ada yang menetralkan dan akhirnya reaksi berhenti seketika. Dalam sel elektrokimia, tempat terjadinya reaksi oksidasi (elektrode Zn) dinamakan anode, sedangkan tempat terjadinya reaksi reduksi (elektrode Cu) dinamakan katode. Alessandro Volta melakukan eksperimen dan berhasil menyusun deret keaktifan logam atau deret potensial logam yang dikenal dengan deret Volta.

Li –K–Ba–Ca–Na–Mg–Al–Mn–Zn–Cr–Fe–Cd–Co–Ni–Sn–Pb–(H)–Cu–Hg–Ag–Pt–Au

Semakin ke kiri suatu unsur dalam deret Volta, sifat reduktornya semakin kuat. Artinya, suatu unsur akan mampu mereduksi ion-ion unsur di sebelah kanannya, tetapi tidak mampu mereduksi ion-ion dari unsur di sebelah kirinya. Logam Na, Mg, dan Al terletak di sebelah kiri H sehingga logam tersebut dapat mereduksi ion H+ untuk menghasilkan gas H2, sedangkan logam Cu dan Ag terletak di sebelah kanan H sehingga tidak dapat mereduksi ion H+(tidak bereaksi dengan asam). Deret Volta juga dapat menjelaskan reaksi logam dengan logam lain. Misalnya, logam Zn dimasukkan ke dalam larutan CuSO4. Reaksi yang terjadi adalah Zn mereduksi Cu2+ (berasal dari CuSO4) dan menghasilkan endapan logam Cu karena Zn terletak di sebelah kiri Cu.

Zn(s) + CuSO4(aq) → ZnSO4(aq) + Cu(s)
atau
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

2. Notasi Sel Elektrokimia
Misal Reaksi yang terjadi pada sel Volta adalah Zn(s) + CuSO4(aq) → ZnSO4(aq) + Cu(s)
Reaksi oksidasi (anode)
Zn(s) → Zn2+(aq) + 2 e
Reaksi reduksi (katode)
Cu2+(aq) + 2 e → Cu(s)
Penulisan reaksi redoks tersebut dapat juga dinyatakan dengan diagram sel berikut:

Zn(s) | Zn2+(aq) || Cu2+(aq) | Cu(s)
dengan:
| = perbedaan fase
|| = jembatan garam
sebelah kiri || = reaksi oksidasi
sebelah kanan || = reaksi reduksi

Contoh Penulisan Reaksi dari Notasi Sel
Nyatakanlah diagram sel dari reaksi pada sel kombinasi berikut.

diagram sel dari reaksi pada sel kombinasi

Jawab

Zn(s) → Zn2+(aq) + 2 e. (oksidasi)
Br2(aq) + 2 e → 2 Br(aq) (reduksi)

Diagram sel:
Zn(s) | Zn2+(aq) || Br2(aq) | Br.(aq)
Jadi, diagram sel untuk sel tersebut adalah Zn(s) | Zn2+(aq) || Br2(aq) | Br.(aq)

Sifat Koligatif Larutan

Standard

Sifat koligatif larutan adalah sifat larutan yang tidak bergantung pada jenis zat terlarut tetapi hanya bergantung pada konsentrasi pertikel zat terlarutnya. Sifat koligatif larutan terdiri dari dua jenis, yaitu sifat koligatif larutan elektrolit dan sifat koligatif  larutan nonelektrolit

A.  Molalitas dan Fraksi Mol

Dalam larutan, terdapat beberapa sifat zat yang hanya ditentukan oleh banyaknya partikel zat terlarut. Oleh karena sifat koligatif larutan ditentukan oleh banyaknya partikel zat terlarut, maka perlu diketahui tentang konsentrasi larutan.

1.  Molalitas (m)

Molalitas (kemolalan) adalah jumlah mol zat terlarut dalam 1 kg (1000 gram) pelarut. Molalitas didefinisikan dengan persamaan berikut :
 m= \frac {massa}{Mr} x \frac {1000} P

  • Keterangan :

m = molalitas larutan (mol / kg)

n = jumlah mol zat terlarut (g / mol)

P = massa pelarut (g)

2. Fraksi Mol (x)

Fraksi mol merupakan satuan konsentrasi yang semua komponen larutannya dinyatakan berdasarkan mol. Fraksi mol komponen i, dilambangkan dengan xi adalah jumlah mol komponen i dibagi dengan jumlah mol semua komponen dalam larutan. Fraksi mol j adalah xj dan seterusnya. Jumlah fraksi mol dari semua komponen adalah 1. Persamaannya dapat ditulis. Molalitas didefinisikan dengan persamaan berikut:
xi = \frac{ni}{ni+nj}

B. Sifat Koligatif Larutan Nonelektrolit

Meskipun sifat koligatif melibatkan larutan, sifat koligatif tidak bergantung pada interaksi antara molekul pelarut dan zat terlarut, tetapi bergatung pada jumlah zat terlarut yang larut pada suatu larutan. Sifat koligatif terdiri dari penurunan tekanan uap, kenaikan titik didih, penurunan titik beku, dan tekanan osmotik.

1.  Penurunan Tekanan Uap (ΔP)

Molekul – molekul zat cair yang meninggalkan permukaan menyebabkan adanya tekanan uap zat cair. Semakin mudah molekul – molekul zat cair berubah menjadi uap, makin tinggi pula tekanan uapzat cair. Apabila tekanan zat cair tersebut dilarutkan oleh zat terlarut yang tidak menguap, maka partikel – partikel zat terlarut ini akan mengurangi penguapan molekul – molekul zat cair. Laut mati adalah contoh dari terjadinya penurunan tekanan uap pelarut oleh zat terlarut yang tidak mudah menguap. Air berkadar garam  sangat tinggi ini terletak di daerah gurun yang sangat panas dan kering, serta tidak berhubungan dengan laut bebas, sehingga konsentrasi zat terlarutnya semakin tinggi. Persamaan penurunan tekanan uap dapat ditulis :

\Delta P =P0 – P

P0 > P

  • Keterangan :

P0 = tekanan uap zat cair murni

P = tekanan uap larutan

Pada tahun 1808, Marie Francois Raoult seorang kimiawan asal Perancis melakukan percobaan mengenai tekanan uap jenuh larutan, sehingga ia menyimpulkan tekanan uap jenuh larutan sama dengan fraksi mol pelarut dikalikan dengan tekanan uap jenuh pelarut murni. Kesimpulan ini dikenal dengan Hukum Roult dan dirumuskan dengan Persamaan penurunan tekanan uap, dapat ditulis:

P = P0 x Xp

\Delta P = P0 x Xt

  • Keterangan :

P = tekanan uap jenuh larutan

P0 = tekanan uap jenuh pelarut murni

Xp = fraksi mol zat pelarut

Xt = fraksi mol zat terlarut

2.  Kenaikan Titik Didi (ΔTb)

Titik didih zat cair adalah suhu tetap pada saat zat cair mendidih. Pada suhu ini, tekanan uap zat cair sama dengan tekanan udara di sekitarnya. Hal ini menyebabkan terjadinya penguapan di seluruh bagian zat cair. Titik didih zat cair diukur pada tekanan 1 atmosfer. Dari hasil penelitian, ternyata titik didih larutan selalu lebih tinggi dari titik didih pelarut murninya. Hal ini disebabkan adanya partikel – partikel zat terlarut dalam suatu larutan menghalangi peristiwa penguapan partikel – partikel pelarut. Oleh karena itu, penguapan partikel – partikel pelarut membutuhkan energi yang lebih besar. Perbedaan titik didih larutan dengan titik didih pelarut murni di sebut kenaikan titik didih yang dinyatakan dengan (\Delta Tb). Persamaannya dapat ditulis:
\Delta Tb = kb \ x \ m
\Delta Tb = kb \ x \frac {g} M_r x \frac {1000} P
\Delta Tb = Tb larutan - Tb pelarut

  • Keterangan :

\DeltaTb = kenaikan titik didih

kb = tetapan kenaikan titik didih molal

m = massa zat terlarut

Mr = massa molekul relatif
Tabel Tetapan Kenaikan Titik Didih (Kb) Beberapa Pelarut

Pelarut Titik Didih Tetapan (Kb)
Aseton 56,2 1,71
Benzena 80,1 02,53
Kamfer 204,0 05,61
Karbon Tetraklorida 76,5 04,95
Siklohesana 80,7 02,79
Naftalena 217,7 05,80
Fenol 182 03,04
Air 100,0 00,52

3. Penurunan Titik Beku (ΔTf)

Adanya zat terlarut dalam larutan akan mengakibatkan titik beku larutan lebih kecil daripada titik beku pelarutnya. Persamaannya dapat ditulis sebagai berikut:
\Delta Tf = kf \ x \ m
\Delta Tb = kf \ x \frac {g} M_r x \frac {1000} P
\Delta Tf = Tf pelarut - Tb larutan

  • Keterangan :

\DeltaTf = penurunan titik beku

kf = penurunan titik beku molal

m = molal larutan

Mr = massa molekul relatif

Tabel Penurunan Titik Beku (Kf) Beberapa Pelarut

Pelarut Titik Beku Tetapan (Kf)
Aseton -95,35 2,40
Benzena 5,45 5,12
Kamfer 179,8 39,7
Karbon Tertraklorida -23 29,8
Sikloheksana 6,5 20,1
Naftalena 80,5 6,94
fenol 43 7,27
Air 0 1,86

4. Tekanan Osmotik (π)

Tekanan osmotik adalah gaya yang diperlukan untuk mengimbangi desakan zat pelarut yang melalui selaput semipermiabel ke dalam larutan. Membran semipermeabel adalah suatu selaput yang dapat dilalui molekul – molekul pelarut dan tidak dapat dilalui oleh zat terlarut. Menurut Van’t Hoff, tekanan osmotik larutan dirumuskan:

 \pi= M x R x T

  • Keterangan :

 \pi = tekanan osmotik

M = molaritas larutan

R = tetapan gas ( 0,082 )

T = suhu mutlak

C. Sifat Koligatif Larutan Elektrolit

Pada konsentrasi yang sama, sifat koligatif larutan elektrolit memliki nilai yang lebih besar daripada sifat koligatif larutan non elektrolit. Banyaknya partikel zat terlarut hasil reaksi ionisasi larutan elektrolit dirumuskan dalam faktor Van’t Hoff. Perhitungan sifat koligatif larutan elektrolit selalu dikalikan dengan faktor Van’t Hoff :

i = 1 + ( n - 1 )\alpha

  • Keterangan :

i = faktor Van’t Hoff

n = jumlah koefisien kation

\alpha = derajat ionisasi

1. Penurunan Tekanan Uap Jenuh (ΔP)

Rumus penurunan tekanan uap jenuh dengan memakai faktor Van’t Hoff adalah :
\Delta P =P0\ x \ X_terlarut \ x \ i

2. Kenaikan Titik Didih (ΔTb)

Persamaannya adalah:

\Delta Tb=kb \ x \ m \ x \ i

3. Penurunan Titik Beku (ΔTf)

Persamaannya adalah :

\Delta Tf =kf \ x \ m \ x \ i

4. Tekanan Osmotik

Persamaannya adalah:
 \pi =M \ x \ R \ x \ T \ x \ i

Laju Reaksi

Standard

Laju reaksi atau kecepatan reaksi menyatakan banyaknya reaksi kimia yang berlangsung per satuan waktu. Laju reaksi menyatakan molaritas zat terlarut dalam reaksi yang dihasilkan tiap detik reaksi. Perkaratanbesi merupakan contoh reaksi kimia yang berlangsung lambat, sedangkan peledakan mesiu atau kembang api adalah contoh reaksi yang cepat.

A. Faktor yang mempengaruhi laju reaksi

Laju reaksi dipengaruhi oleh beberapa faktor, antara lain:

1. Luas permukaan sentuh

Luas permukaan sentuh memiliki peranan yang sangat penting dalam banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil luas permukaan bidang sentuh, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil. Karakteristik kepingan yang direaksikan juga turut berpengaruh, yaitu semakin halus kepingan itu, maka semakin cepat waktu yang dibutuhkan untuk bereaksi; sedangkan semakin kasar kepingan itu, maka semakin lama waktu yang dibutuhkan untuk bereaksi.

2. Suhu

Suhu juga turut berperan dalam mempengaruhi laju reaksi. Apabila suhu pada suatu reaksi yang berlangusng dinaikkan, maka menyebabkan partikel semakin aktif bergerak, sehingga tumbukan yang terjadi semakin sering, menyebabkan laju reaksi semakin besar. Sebaliknya, apabila suhu diturunkan, maka partikel semakin tak aktif, sehingga laju reaksi semakin kecil.

3.  Katalis

Katalis adalah suatu zat yang mempercepat laju reaksi kimia pada suhu tertentu, tanpa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Suatu katalis berperan dalam reaksi tapi bukan sebagai pereaksi ataupun produk. Katalis memungkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicunya terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi.

Katalis dapat dibedakan ke dalam dua golongan utama: katalis homogen dan katalis heterogen. Katalis heterogen adalah katalis yang ada dalam fase berbeda dengan pereaksi dalam reaksi yang dikatalisinya, sedangkan katalis homogen berada dalam fase yang sama. Satu contoh sederhana untuk katalisis heterogen yaitu bahwa katalis menyediakan suatu permukaan di mana pereaksi-pereaksi (atau substrat) untuk sementara terjerat. Ikatan dalam substrat-substrat menjadi lemah sedemikian sehingga memadai terbentuknya produk baru. Ikatan atara produk dan katalis lebih lemah, sehingga akhirnya terlepas.Katalis homogen umumnya bereaksi dengan satu atau lebih pereaksi untuk membentuk suatu perantara kimia yang selanjutnya bereaksi membentuk produk akhir reaksi, dalam suatu proses yang memulihkan katalisnya. Berikut ini merupakan skema umum reaksi katalitik, di mana C melambangkan katalisnya:

A + C \rarr AC … (1)
B + AC \rarr AB + C … (2)

Meskipun katalis (C) termakan oleh reaksi 1, namun selanjutnya dihasilkan kembali oleh reaksi 2, sehingga untuk reaksi keseluruhannya menjadi :

A + B + C \rarr AB + C

4.  Molaritas

Molaritas adalah banyaknya mol zat terlarut tiap satuan volum zat pelarut. Hubungannya dengan laju reaksi adalah bahwa semakin besar molaritas suatu zat, maka semakin cepat suatu reaksi berlangsung. Dengan demikian pada molaritas yang rendah suatu reaksi akan berjalan lebih lambat daripada molaritas yang tinggi.

5.  Konsentrasi

Karena persamaan laju reaksi didefinisikan dalam bentuk konsentrsi reaktan maka dengan naiknya konsentrasii maka naik pula kecepatan reaksinya. Artinya semakin tinggi konsentrasi maka semakin banyak molekul reaktan yang tersedia dengan demikian kemungkinan bertumbukan akan semakin banyak juga sehingga kecepatan reaksi meningkat.

B. Persamaan laju reaksi

Untuk reaksi kimia

aA + bB \rarr pP + qQ

hubungan antara laju reaksi dengan molaritas adalah

\,v = k[A]^{n}[B]^{m}

dengan:

  • V = Laju reaksi
  • k = Konstanta laju reaksi
  • m = Orde reaksi zat A
  • n = Orde reaksi zat B

Orde reaksi zat A dan zat B hanya bisa ditentukan melalui percobaan.

C. Orde Reaksi

Orde reaksi menyatakan pangkat dari konsentrasi, maka bentuk grafiknya merupakan grafik perpangkatan.

Reaksi : A → hasil

1. Reaksi Orde Nol (0)

Persamaan laju reaksinya :

v = k [ A ]0

v = k

 reaksi orde nol ditunjukkan oleh grafik antara [A] dengan v adalah garis lurus konstan.

2. Reaksi Orde Satu

Persamaan laju reaksinya :

V = k [A]1 = k [A]

Reaksi orde satu ditunjukkan oleh grafik antara [A] dengan v yang merupakan garis linear.

3. Reaksi Orde Dua

Persamaan laju reaksinya :

v = k [A]2

Reaksi orde dua ditunjukkan oleh

grafik antara [A] dengan v yang merupakan Garis lengkung (parabola).

Larutan Asam Basa

Standard

Asam dan Basa merupakan dua golongan zat kimia yang sangat penting dalam kehidupan sehari-hari. Berkaitan dengan sifat asam Basa, larutan dikelompokkan dalam tiga golongan, yaitu bersifat asam, bersifat basa, dan bersifat netral. Asam dan Basa memiliki sifat-sifat yang berbeda, sehingga dapat kita bisa menentukan sifat suatu larutan. Untuk menentukan suatu larutan bersifat asam atau basa, ada beberapa cara. Yang pertama menggunakan indikator warna, yang akan menunjukkan sifat suatu larutan dengan perubahan warna yang terjadi. Misalnya Lakmus, akan berwarna merah dalam larutan yang bersifat asam dan akan berwarna biru dalam larutan yang bersifat basa. Sifat asam basa suatu larutan juga dapat ditentukan dengan mengukur pH-nya. pHmerupakan suatu parameter yang digunakan untuk menyatakan tingkat keasaman larutan. Larutan asam memiliki pH kurang dari 7, larutan basa memiliki pH lebih dari 7, sedangkan larutan netral memiliki pH=7. pH suatu larutan dapat ditentukan dengan indikator pH atau dengan pH meter.

A. teori Asam Basa
1. Asam Basa Arrhenius
  • Asam adalah senyawa yang menghasilkan ion H+ jika dilarutkan di dalam air. contoh: HF, HCl,H2SO4, H3PO4,CH3COOH, dll.
  • Basa adalah senyawa yang menghasilkan ion OH jika dilarutkan di dalam air. contoh: NaOH, KOH, Ba(OH)2, dll.

2. Asam Basa Bronsted Lowry

  • Asam adalah senyawa?partikel yang memberi proton (donor proton), H berkurang
  • Basa adalah senyawa?partikel yang menerima proton (akseptor proton), H bertambah.

3. Asam Basa Lewis

  • Asam adalah senyaw?partikel yang menerima pasangan elektron.
  • Basa adalah senyawa? partikel yang memberi pasangan elektron.

B. Kekuatan Asam Basa

Asam kuat apabila dilarutkan dalam air akan terionisai sempurna ( a =1). Sebagai contoh asam kuat antara lain :

HCl –> H + + Cl

HNO 3 –> H + + NO 3

Begitu juga yang terjadi pada larutan basa kuat. Basa kuat jika dilarutkan dalam air akan mengalami ionisasi sempurna. Sebagai contoh basa kuat antara lain:

KOH –> K + + OH

Ba(OH) 2 –> Ba 2+ + 2OH

Tetapan ionisasi asam kuat dan basa kuat dalam air sama dengan 1 .

Asam lemah yaitu senyawa asam yang jika dilarutkan dalam air akan terionisassi sebagian (0< a <1).

Sebagai contoh asam lemah antara lain :

CH 3 COOH ⇄ H + + CH 3 COO

H 2 CO 3 ⇄ 2H + + CO 3 2-

Begitu juga yang terjadi pada larutan basa lemah. Basa lemah hanya terionisasi sebagian jika dilarutkan dalam air.

Sebagai contoh basa lemah antara lain:
NH 4 OH ⇄ NH 4 + + OH
Al(OH) 3 ⇄ Al 3+ + 3OH

Asam lemah HA dalam air akan terionisasi sebagian sebagai berikut:

HA ⇄ H + + A

Menurut hukum kesetimbangan

Jika [ H + ] = [ A ] dan [ HA ] dianggap tetap karena HA yang terionisasi kecil, maka:

atau

Sehingga

Basa lemah LOH dalam air akan terionisasi sebagian sebagai berikut:

LOH ⇄ L+ + OH-

Menurut hukum kesetimbangan

jika [ L + ] = [ OH ] dan [ LOH ] dianggap tetap karena LOH yang terionisasi kecil, maka:

C. pH Asam-Basa

pH adalah derajat keasaman yang digunakan untuk menyatakan tingkat keasaman atau kebasaan yang dimiliki oleh suatu larutan.

pH= -log [H+]

pOH= -log [OH]

pH + pOH= 14

pH= 14-pOH

harga pH untuk berbagai Larutan:

  • larutan asam: pH ˂ 7
  • larutan basa : pH ˃ 7
  • larutan netral pH=7

D. Indikator Asam Basa

Asam dan basa dapat dikenali dengan menggunakan zat indikator, yaitu zat yang memberi warna berbeda dalam lingkungan asam dan lingkungan basa (zat yang warnanya dapat berubah saat berinteraksi atau bereaksi dengan senyawa asam maupun senyawa basa).
Dalam laboratorium kimia, indikator asam-basa yang biasa di gunakan adalah indikator buatan dan indikator alami. Berikut ini penjelasan tentang indikator asam-basa buatan dan indikator asam-basa alami.
1. lakmus
Sebagai indikator asam-basa, lakmus memiliki beberapa kelebihan antara lain adalah sebagai berikut.

  • Lakmus dapat berubah warnanya dengan cepat saat bereaksi dengan asam maupun basa. Warna yang terjadi pada lakmus dapat terlihat jelas. Lakmus akan berwarna merah dalam larutan asam dan akan berwarna biru dalam larutan basa.
  • Lakmus sukar bereaksi dengan oksigen dalam udara bebas, sehingga dapat bertahan lama.
  • Lakmus mudah di serap oleh kertas, sehingga di gunakan dalam bentuk kertas lakmus (agar zat lebih mudah meresap)

Kertas lakmus jenisnya ada dua, yaitu kertas lakmus merah & kertas lakmus biru.

Semua zat tergolong asam apabila :

  • lakmus biru berubah menjadi merah, atau
  • lakmus merah tidak berubah warna

Semua zat tergolong basa apabila :

  • lakmus merah menjadi biru, atau
  • lakmus biru tidak berubah warna

Idikator Asam Basa

Nama Indikator

Dalam Basa

Dalam Asam

Lakmus
Metil merah
Fenolftalen
Brom timol biru

biru
kuning
merah
biru

merah
merah
tak berwarna
kuning

Selain lakmus, dalam laboratorium kimia juga masih banyak lagi indikator asam-basa buatan antara lain fenolftalen, metil merah dan brom timol biru.

Fenolftalen dalam larutan asam tetap (tak berubah warnanya), sedangkan dalam larutan basa berubah menjadi warna merah. Metil merah dalam larutan asam berwarna merah sedangkan dalam larutan basa berwarna kuning.

indikator pKind pH rentang pH
lakmus 6.5 5 – 8
jingga metil 3.7 3.1 – 4.4
fenolftalein 9.3 8.3 – 10.0

Perubahan warna lakmus terjadi tidak selalu pada rentang pH yang besar, tetapi lakmus berguna untuk mendeteksi asam dan basa pada lab karena perubahan warnanya sekitar 7. Jingga metil atau fenolftalein sedikit kurang berguna.

Berikut ini dapat dilihat dengan lebih mudah dalam bentuk diagram.

2. indikator alami

Di samping menggunakan indikator buatan, seperti lakmus, fenolftalen, metil merah dan brom timol biru, kita juga dapat mengenali senyawa asam atau basa dengan menggunakan indikator alami, seperti bunga sepatu, bunga hidrangea, kol merah, kunyit dan beberapa jenis tumbuhan lainnya. Indikator asam-basa yang baik adalah zat warna yang memberi warna berbeda dalam larutan asam dan larutan basa.

TABEL DAFTAR INDIKATOR ASAM BASA

NAMA
pH RANGE
WARNA
TIPE(SIFAT)
Biru timol
1,2-2,8
merah – kuning
asam
Kuning metil
2,9-4,0
merah – kuning
  basa
Jingga metil
3,1 – 4,4
merah – jingga
  basa
Hijau bromkresol
3,8-5,4
kuning – biru
asam
Merah metil
4,2-6,3
merah – kuning
  basa
Ungu bromkresol
5,2-6,8
kuning – ungu
asam
Biru bromtimol
6,2-7,6
kuning – biru
asam
Merah fenol
6,8-8,4
kuning – merah
asam
Ungu kresol
7,9-9,2
kuning – ungu
asam
Fenolftalein
8,3-10,0
t.b. – merah
asam
Timolftalein
9,3-10,5
t.b. – biru
asam
Kuning alizarin
10,0-12,0
kuning – ungu
  basa

E. Titrasi

Titrasi merupakan suatu metode yang bertujuan untuk menentukan banyaknya suatu larutan dengan konsentrasi yang telah diketahui agar tepat habis bereaksi dengan sejumlah larutan yang dianalisis atau ingin diketahui kadarnya atau konsentrasinya. Suatu zat yang akan ditentukan konsentrasinya disebut sebagai “titran” dan biasanya diletakkan di dalam labu Erlenmeyer, sedangkan zat yang telah diketahui konsentrasinya disebut sebagai “titer” atau “titrat”  dan biasanya diletakkan di dalam “buret”. Baik titer maupun titran biasanya berupa larutan.

Titrant ditambahkan titer tetes demi tetes sampai mencapai keadaan ekuivalen ( artinya secara stoikiometri titrant dan titer tepat habis bereaksi) yang biasanya ditandai dengan berubahnya warna indikator. Keadaan ini disebut sebagai “titik ekuivalen”, yaitu titik dimana konsentrasi asam sama dengan konsentrasi basa atau titik dimana jumlah basa yang ditambahkan sama dengan jumlah asam yang dinetralkan : [H+] = [OH-]. Sedangkan keadaan dimana titrasi dihentikan dengan cara melihat perubahan warna indikator disebut sebagai “titik akhir titrasi”. Titik akhir titrasi ini mendekati titik ekuivalen, tapi biasanya titik akhir titrasi melewati titik ekuivalen. Oleh karena itu, titik akhir titrasi sering disebut juga sebagai titik ekuivalen. Pada saat titik ekuivalen ini maka proses titrasi dihentikan, kemudian catat volume titer yang diperlukan untuk mencapai keadaan tersebut. Dengan menggunakan data volume titran, volume dan  konsentrasi titer maka bisa dihitung konsentrasi titran tersebut.

Pada saat titik ekuivalen maka mol-ekuivalen asam akan sama dengan mol-ekuivalen basa, maka hal ini dapat ditulis sebagai berikut:

mol-ekuivalen asam = mol-ekuivalen basa

Mol-ekuivalen diperoleh dari hasil perkalian antara normalitas (N) dengan volume, maka rumus diatas dapat ditulis sebagai berikut:

N asam x V asam = N asam x V basa

Normalitas diperoleh dari hasil perkalian antara molaritas (M) dengan jumlah ion H+ pada asam atau jumlah ion OH- pada basa, sehingga rumus diatas menjadi:

(n x M asam) x V asam = (n x M basa) x V basa

Keterangan :
N = Normalitas
V = Volume
M = Molaritas
n = Jumlah ion H +(pada asam) atau OH- (pada basa)

IKATAN KIMIA

Standard

 

Ikatan Kimia adalah suatu gaya yang menyebabkan atom-atom bergabung membentuk suatu senyawa. Ikatan kimia dilakukan dengan melepas atau menerima elektron sehingga susunan elektron menjadi stabil (seperti susunan pada gas mulia/ golongan VIII A. Golongan IA-IIIA cenderung melepas elektron sebanyak elektron valensinya membentuk ion positif (kecuali H,Be, dan B). Golongan IVA-VIIA cenderung  menerima elektron membentuk ion negatif untuk mencapai elektron valensi 8.

Secara umum, ikatan kimia dapat digolongkan menjadi dua jenis, yaitu:

A. Ikatan antar atom

1. Ikatan ion = heteropolar

Ikatan ionik adalah sebuah gaya elektrostatik yang mempersatukan ion-ion dalam suatu senyawa ionik. ikatan ion sangat dipengaruhi oleh besarnya beda keelektronegatifan dari atom-atom pembentuk senyawa tersebut. Semakin besar beda keelektronegatifannya, maka ikatan ionik yang dihasilkan akan semakin kuat.Ikatan ionik tergolong ikatan kuat, dalam hal ini memiliki energi ikatan yang kuat sebagai akibat dari perbedaan keelektronegatifan ion penyusunnya. Pembentukan ikatan ionik dilakukan dengan cara transfer elektron. Dalam hal ini, kation terionisasi dan melepaskan sejumlah elektron hingga mencapai jumlah oktet yang disyaratkan dalam aturan Lewis. Selanjutnya elektron yang dilepaskan ini akan diterima oleh anion hingga mencapai jumlah oktet. Proses transfer elektron ini akan menghasilkan suatu ikatan ionik yang mempersatukan ion anion dan kation.

Sifat-Sifat ikatan ionik adalah:

        a. Bersifat polar sehingga larut dalam pelarut polar

        b. Memiliki titik leleh yang tinggi

        c. Baik larutan maupun lelehannya bersifat elektrolit

2. Ikatan kovalen = homopolar

Ikatan kovalen merupakan ikatan kimia yang terbentuk dari pemakaian elektron bersama oleh atom-atom pembentuk ikatan. Ikatan kovalen biasanya terbentuk dari unsur-unsur non logam. Dalam ikatan kovalen, setiap elektron dalam pasangan tertarik ke dalam nukleus kedua atom. Tarik menarik elektron inilah yang menyebabkan kedua atom terikat bersama. Ikatan kovalen biasanya terbentuk antar atom H dengan atom dari golongan IVA-VIIA. Ikatan kovalen juga terbentuk dari atom-atom sejenis dari golongan VA-VIIA (N2, O2, CL2, dll)

3. Ikatan kovalen koordinasi = semipolar

Ikatan kovalen koordinat merupakan ikatan kimia yang terjadi apabila pasangan elektron bersama yang dipakai oleh kedua atom disumbangkan oleh sala satu atom saja. Sementara itu atom yang lain hanya berfungsi sebagai penerima elektron berpasangan saja.

Syarat-syarat terbentuknya ikatan kovalen koordinat:

  1. Salah satu atom memiliki pasangan elektron bebas
  2. Atom yang lainnya memiliki orbital kosong

4. Ikatan Logam

atom-atom unsur logam mempunyai keelektronegatifan rendah dan energi ionisasi yang kecil, sehingga elektron valensinya mudah lepas. Elektron-elektron dapat terdelokalisasi sehingga dapat bergerak bebas dalam awan elektron yang mengelilingi atom-atom logam. Akibat dari elektron yang dapat bergerak bebas ini adalah sifat logam yang dapat menghantarkan listrik dengan mudah. Ikatan logam ini hanya ditemui pada ikatan yang seluruhnya terdiri dari atom unsur-unsur logam semata.

B. Ikatan antar molekul

1. Ikatan hidrogen

Ikatan hidrogen merupakan gaya tarik menarik antara atom H dengan atom lain yang mempunyai keelektronegatifan besar pada satu molekul dari senyawa yang sama. Ikatan hidrogen merupakan ikatan yang paling kuat dibandingkan dengan ikatan antar molekul lain, namun ikatan ini masih lebih lemah dibandingkan dengan ikatan kovalen maupun ikatan ion.

2. Ikatan van der walls

Gaya Van Der Walls dahulu dipakai untuk menunjukan semua jenis gaya tarik menarik antar molekul. Namun kini merujuk pada gaya-gaya yang timbul dari polarisasi molekul menjadi dipol seketika. Ikatan ini merupakan jenis ikatan antar molekul yang terlemah, namun sering dijumpai diantara semua zat kimia terutama gas.

 

Sifat-Sifat Keperiodikan Unsur

Standard

Beberapa sifat-sifat unsur dari suatu periodik unsur meliputi:

1.    Jari-jari Atom

Jari-jari atom merupakan jarak dari pusat atom (inti atom) sampai kulit elektron yang ditempati elektron. Dalam satu golaongan, semakin ke bawah, jari-jari atom akan semakin besar (karena jumlah kulitnya semakin banyak). Dalam satu periode, semakin ke kanan, jari-jari atom semakin kecil (karena jumlah elektron semakin ke kanan semakin banyak, maka daya tarik inti terhadap elektronsemakin kuat yang akan memperkecil jari-jari atomnya.

2.    Energi Ionisasi

Energi ionisasi adalah energi yang diperlukan untuk melepaskan elektron pada kulit terluar. Energi ionisasi unsur-unsur dalam satu periode dari kiri ke kanan semakin besar, sedangkan energi ionisasi unsur-unsur segolongan dari atas ke bawah semakin kecil. Jika jarak antara elektron dengan inti semakin jauh, maka energi yang diperlukan untuk melawan gaya tarikinti semakin kecil, berarti energi ionisasinya kecil.

3.    Afinitas Elektron

Afinitas elektron merupakan besarnya energi yang dihasilkan atau dilepaskan apabila suatu atom menarik sebuah elektron. Umumnya, dalam satu golongan, semakin ke atas, afinitas elektronnya semakin besar. Dalam satu periode, semakin ke kanan, afinitas elektronnya semakin besar. Semakin besar energi yang di lepas (afinitas elektron) menunjukkan bahwa atom tersebut mempunyai kecendrungan untuk menarik elektron dan menjadi ion negatif.

Tabel  Afinitas elektron atom.


H 72,4 C 122,5 F 322,3
Li 59, O 141,8 Cl 348,3
Na 54,0 P 72,4 Br 324,2
K 48,2 S 200,7 I 295,2

4.    Keelektronegatifan

Keelektronegatifan adalah kemampuan suatu atom untuk menangkap elektron dari atom lain. Dalam satu golongan, semakin ke atas, keelektronegatifan semakin besar. Semakin ke atas, jarak inti elektron semakin dekatsehingga lebih mudah menarik elektron dari luar. Dalam satu periode, semakin ke kanan, keelektronegatifan semakin besar. Semakin ke kanan, jumlah elekron semakin banyak dan gaya tarik inti kuat sehingga mudah menarik elektron lain.

Tabel  Keelektronegativitan unsur golongan utama elements (Pauling)